Publications

2025

  1. Approximating q→p Norms of Non-Negative Matrices in Nearly-Linear Time
    Étienne Objois, and Adrian Vladu
    arXiv preprint, 2025
  2. STOC
    Breaking the Barrier of Self-Concordant Barriers: Faster Interior Point Methods for M-Matrices
    Adrian Vladu
    57th ACM Symposium on Theory of Computing, 2025

2023

  1. STOC
    Interior Point Methods with a Gradient Oracle
    Adrian Vladu
    55th ACM Symposium on Theory of Computing, 2023
  2. SODA
    Discrepancy Minimization via Regularization
    Lucas Pesenti, and Adrian Vladu
    2023 Annual ACM-SIAM Symposium on Discrete Algorithms, 2023
  3. ICML
    Quantized Distributed Training of Large Models with Convergence Guarantees
    Ilia Markov, Adrian Vladu, Qi Guo, and Dan Alistarh
    40th International Conference on Machine Learning, 2023
  4. ICLR
    CrAM: A Compression-Aware Minimizer
    Alexandra Peste, Adrian Vladu, Eldar Kurtic, Christoph H Lampert, and Dan Alistarh
    International Conference on Learning Representations, 2023

2021

  1. FOCS
    Faster Sparse Minimum Cost Flow by Electrical Flow Localization
    Kyriakos Axiotis, Aleksander Mądry, and Adrian Vladu
    IEEE 62nd Annual Symposium on Foundations of Computer Science, 2021
  2. ICML
    Decomposable Submodular Function Minimization via Maximum Flow
    Kyriakos Axiotis, Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and Adrian Vladu
    38th International Conference on Machine Learning, 2021
  3. NeurIPS
    AC/DC: Alternating Compressed/Decompressed Training of Deep Neural Networks
    Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh
    Advances in Neural Information Processing Systems, 2021
  4. AAAI
    Adaptive Gradient Methods for Constrained Convex Optimization and Variational Inequalities
    Alina Ene, Huy L Nguyen, and Adrian Vladu
    35th AAAI Conference on Artificial Intelligence, 2021
  5. AAAI
    Projection-Free Bandit Optimization with Privacy Guarantees
    Alina Ene, Huy L Nguyen, and Adrian Vladu
    35th AAAI Conference on Artificial Intelligence, 2021

2020

  1. FOCS
    Circulation Control for Faster Minimum Cost Flow in Unit-Capacity Graphs
    Kyriakos Axiotis, Aleksander Mądry, and Adrian Vladu
    IEEE 61st Annual Symposium on Foundations of Computer Science, 2020

2019

  1. STOC
    Submodular Maximization With Matroid and Packing Constraints in Parallel
    Alina Ene, Huy L Nguyen, and Adrian Vladu
    51st Annual ACM SIGACT Symposium on Theory of Computing, 2019
  2. ICML
    Improved Convergence for ℓ and ℓ1 Regression via Iteratively Reweighted Least Squares
    Alina Ene, and Adrian Vladu
    36th International Conference on Machine Learning, 2019

2018

  1. A Parallel Double Greedy Algorithm for Submodular Maximization
    Alina Ene, Huy L Nguyen, and Adrian Vladu
    arXiv preprint, 2018
  2. ICLR
    Towards Deep Learning Models Resistant to Adversarial Attacks
    Aleksander Mądry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu
    International Conference on Learning Representations, 2018

2017

  1. EC
    Multidimensional Binary Search for Contextual Decision-Making
    Ilan Lobel, Renato Paes Leme, and Adrian Vladu
    ACM Conference on Economics and Computation, 2017
    Journal version in Operations Research
  2. FOCS
    Matrix Scaling and Balancing via Box Constrained Newton’s Method and Interior Point Methods
    Michael B Cohen, Aleksander Mądry, Dimitris Tsipras, and Adrian Vladu
    IEEE 58th Annual Symposium on Foundations of Computer Science, 2017
  3. STOC
    Almost-Linear-Time Algorithms for Markov Chains and New Spectral Primitives for Directed Graphs
    Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B Rao, Aaron Sidford, and Adrian Vladu
    49th Annual ACM SIGACT Symposium on Theory of Computing, 2017
  4. SODA
    Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in Õ(m10/7 log W) Time Time
    Michael B Cohen, Aleksander Mądry, Piotr Sankowski, and Adrian Vladu
    Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 2017

2016

  1. FOCS
    Faster Algorithms for Computing the Stationary Distribution, Simulating Random Walks, and More
    Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian Vladu
    IEEE 57th Annual Symposium on Foundations of Computer Science, 2016
  2. mBio
    Phenotypic Profiling Reveals That Candida Albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells
    Iuliana V Ene, Matthew B Lohse, Adrian Vladu, Joachim Morschhäuser, Alexander D Johnson, and Richard J Bennett
    mBio, 2016

2015

  1. ICML
    Tight Bounds for Approximate Caratheodory and Beyond
    Vahab Mirrokni, Renato Paes Leme, Adrian Vladu, and Sam Chiu-wai Wong
    34th International Conference on Machine Learning, 2015
  2. PODC
    How to Elect a Leader Faster Than a Tournament
    Dan Alistarh, Rati Gelashvili, and Adrian Vladu
    ACM Symposium on Principles of Distributed Computing, 2015
  3. SPAA
    Improved Parallel Algorithms for Spanners and Hopsets
    Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu
    27th Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2015

2010

  1. WAOA
    Online Ranking for Tournament Graphs
    Claire Mathieu, and Adrian Vladu
    International Workshop on Approximation and Online Algorithms, 2010